The glyoxalase system is a highly conserved and ubiquitously expressed enzyme system, which is responsible for the detoxification of methylglyoxal (MG), a spontaneous by-product of energy metabolism. This study is able to show that a phosphorylation of threonine-107 (T107) in the (rate-limiting) Glyoxalase 1 (Glo1) protein, mediated by Ca2+/calmodulin-dependent kinase II delta (CamKIIδ), is associated with elevated catalytic efficiency of Glo1 (lower KM; higher Vmax). Additionally, we observe proteasomal degradation of non-phosphorylated Glo1 via ubiquitination does occur more rapidly as compared with native Glo1. The absence of CamKIIδ is associated with poor detoxification capacity and decreased protein content of Glo1 in a murine CamKIIδ knockout model. Therefore, phosphorylation of T107 in the Glo1 protein by CamKIIδ is a quick and precise mechanism regulating Glo1 activity, which is experimentally linked to an altered Glo1 status in cancer, diabetes, and during aging.
Keywords: Ca(2+)/calmodulin-dependent kinase; Michaelis-Menten kinetics; aging; cancer; cellular biochemistry; diabetes; glyoxalase system; methylglyoxal; phosphorylation; post-translational modifications.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.