We developed an approach for substantial attenuation of Mycobacterium tuberculosis by prolonged culturing under gradually acidifying conditions. Bacteria subjected to acidification lost the capacity to form colonies on solid media, but readily resuscitated their growth in the murine host, providing a useful model to study in vivo development of infection mimicking latent and reactivation tuberculosis (TB) in humans. Here we characterize biomarkers of lung pathology and immune responses triggered by such attenuated bacteria in genetically TB-susceptible and resistant mice. In susceptible I/St mice, CFU counts in lungs and spleens were ~1.5-log higher than in resistant B6 mice, accompanied by diffuse pneumonia and excessive lung infiltration with highly activated CD44+CD62L- T-lymphocytes resulting in death between months 7-9 post challenge. B6 mice were characterized by development of local inflammatory foci, higher production of pro-inflammatory IL-6 and IL-11 cytokines and a more balanced T-cell activation in their lungs. CFU counts remained stable in B6 mice during the whole 18-mo observation period, and all mice survived. Thus, we established a mouse model of fatal reactivation TB vs. indefinite mycobacterial possession after identical challenge and characterized the features of immune responses in the lung tissue underlining these polar phenotypes.