Background/aim: 18 kDa Translocator protein (TSPO) is a mitochondrial protein up-regulated in colorectal carcinoma (CRC). Our purpose was to develop a TSPO-targeted doxorubicin prodrug (Dox-TSPO) which can be loaded onto drug-eluting beads for transarterial chemoembolization. Furthermore, we evaluated its loading and release kinetics and effects on cell viability.
Materials and methods: N-Fmoc-DOX-14-O-hemiglutarate was coupled with a TSPO ligand, 6-TSPOmbb732, using classical N,N,N',N'-tetramethyl-O-(1H-benzotriazol-1-yl)uranium hexafluorophosphate coupling to produce Dox-TSPO. Loading and elution studies were performed using DC beads™. Cell viability studies were performed using CellTiter-Glo® Luminescent Cell Viability Assay.
Results: Dox-TSPO was successfully synthesized and readily loaded onto and eluted from DC beads™, albeit at a slower rate than free doxorubicin. CRC cell lines expressing TSPO were 2- to 4- fold more sensitive to Dox-TSPO compared to free doxorubicin at 72 h.
Conclusion: Dox-TSPO is a promising candidate for targeted and directed cancer treatment of CRC liver metastases.
Keywords: TSPO; Targeted therapy; colorectal carcinoma; doxorubicin; prodrug.
Copyright© 2020, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.