Background/aim: Somatic mutations were investigated in 21 patients with postmenopausal estrogen receptor (ER)-positive and human epidermal growth factor receptor-2 (HER-2)-positive (ER+HER2+) breast cancer (BC) treated with neoadjuvant letrozole and lapatinib, to identify their distinct molecular landscape.
Patients and methods: We used tissue samples of 21 patients from phase II Neo ALL-IN cohort, and somatic alterations were examined using targeted exome sequencing performed in Foundation Medicine, Inc. (FMI).
Results: TP53 (61.9%) and PIK3CA (57.1%) were the two most frequently mutated genes that were inter-correlated (p=0.026). They were associated with unfavorable clinical outcomes, particularly when accompanying PIK3CA mutations at exon 9 in helical domains. Meanwhile, MLL2 alteration was negatively associated with mutations of TP53 or PIK3CA, and it tended to be present in patients with low KI-67 levels and no initial nodal involvement. Moreover, patients with MLL2 mutations numerically showed more favorable overall response rates (ORR) (80% vs. 56.2%) and better 5-year event-free survival (EFS) rates (100% vs. 87.5%) compared to the wild-type.
Conclusion: Mutations in TP53 and PIK3CA hotspot at exon 9 may be potential negative predictors of ER+HER2+ BC treated with neoadjuvant letrozole and lapatinib, while MLL2 inactivating mutation might confer therapeutic benefit in these patients.
Keywords: ER+/HER2+; MLL2; Neo-ALL-IN; PIK3CA; next-generation sequencing; triple-positive breast cancer.
Copyright© 2020, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.