Excessive activation of NLRP3 inflammasome is associated with the pathogenesis of inflammatory diseases. Pristimerin (Pri) is a quinonoid triterpene derived from traditional Chinese medical herb Celastraceae and Hippocrateaceae. Pri has shown antifungal, antibacterial, antioxidant, and anticancer activities. In this study we investigated whether NLRP3 inflammasome was associated with the anti-inflammatory activity of Pri. We showed that Pri (0.1-0.4 μM) dose-dependently blocked caspase-1 activation and IL-1β maturation in LPS-primed mouse bone-marrow-derived macrophages (BMDMs). Pri specifically inhibited NLRP3 inflammasome activation, had no visible effects on NLRC4 and AIM2 inflammasome activation. Furthermore, we demonstrated that Pri blocked the assembly of the NLRP3 inflammasome via disturbing the interaction between NEK7 and NLRP3; the α, β-unsaturated carbonyl moiety of Pri was essential for NLRP3 inflammasome inactivation. In LPS-induced systemic inflammation mouse model and MSU-induced mouse peritonitis model, preinjection of Pri (500 μg/kg, ip) produced remarkable therapeutic effects via inhibition of NLRP3 inflammasome in vivo. In HFD-induced diabetic mouse model, administration of Pri (100 μg· kg-1 ·d-1, ip, for 6 weeks) reversed HFD-induced metabolic disorders via suppression of NLRP3 inflammasome activation. Taken together, our results demonstrate that Pri acts as a NLRP3 inhibitor, suggesting that Pri might be useful for the treatment of NLRP3-associated diseases.
Keywords: HFD-induced metabolic disorders; IL-1β; LPS; LPS-induced systemic inflammation; MSU-induced peritonitis; NLRP3 inflammasome; bone-marrow-derived macrophages; caspase-1; pristimerin.