The compliance and conformability of soft robots provide inherent advantages when working around delicate objects or in unstructured environments. However, rapid locomotion in soft robotics is challenging due to the slow propagation of motion in compliant structures, particularly underwater. Cephalopods overcome this challenge using jet propulsion and the added mass effect to achieve rapid, efficient propulsion underwater without a skeleton. Taking inspiration from cephalopods, here we present an underwater robot with a compliant body that can achieve repeatable jet propulsion by changing its internal volume and cross-sectional area to take advantage of jet propulsion as well as the added mass effect. The robot achieves a maximum average thrust of 0.19 N and maximum average and peak swimming speeds of 18.4 cm/s (0.54 body lengths/s) and 32.1 cm/s (0.94 BL/s), respectively. We also demonstrate the use of an onboard camera as a sensor for ocean discovery and environmental monitoring applications.
Keywords: bioinspired robotics; cephalopod inspired motion; jet propulsion; robotics; soft robotics.
© 2020 IOP Publishing Ltd.