Significant improvements in the technology of RNA in situ hybridization (RNA-ISH) in the past five decades have opened up novel fields of its application as a valuable and an attractive adjunct to the portfolio of pathologist's daily routine diagnostic practice.In contrast to the former methodology, the current bDNA-based technology is not only easier to handle but also considerably more sensitive, enabling single-target molecule detection in formalin-fixed and paraffin-embedded tissue specimens without significant effort by both the lab and the evaluating pathologist, as assays can be run on standard automated staining devices and evaluated by light microscopy. Compared to molecular methods like RT-PCR and whole-genome analysis, RNA-ISH maintains tissue integrity thus offering the invaluable advantage of localization of target cells especially in relation to secreted proteins and expression of the target sequence in multiple cell types. The first clinical trials implementing RNA-ISH for patient stratification and selection are in progress and already led to the first drug approvals based on its use as a CDx test.In addition to its role as a complementary method for the establishment of novel IHC procedures or as an addition or replacement to IHC in the standard routine portfolio, RNA-ISH has gained special importance for its capacity to detect noncoding RNA species or mutation or splice variants, where no alternative procedures are available. This more complex application requires development of standardized procedures and involvement of the pathologist during assay establishment and for routine specimen evaluation.The present article reviews the development of RNA-ISH from its early uses to its current applications in research and diagnostics based on the authors' considerable experience of applying it as tool in a biopharmaceutical research organization.
Keywords: Diagnostics; Expression profiling; Precision oncology; bDNA; mRNA.