Background: Advances in bioinformatics recently allowed for the recovery of 'metagenomes assembled genomes' from human microbiome studies carried on with shotgun sequencing techniques. Such approach is used as a mean to discover new unclassified metagenomic species, putative biological entities having distinct metabolic traits.
Results: In the present analysis we compare 400 genomes from isolates available on NCBI database and 10,000 human gut metagenomic species, screening all of them for the presence of a minimal set of core functionalities necessary, but not sufficient, for life. As a result, the metagenome-assembled genomes resulted systematically depleted in genes encoding for essential functions apparently needed to support autonomous bacterial life.
Conclusions: The relevant degree of lacking core functionalities that we observed in metagenome-assembled genomes raises some concerns about the effective completeness of metagenome-assembled genomes, suggesting caution in extrapolating biological information about their metabolic propensity and ecology in a complex environment like the human gastrointestinal tract.
Keywords: Gut microbiome; Metagenomic assembled genomes; Minimal bacterial genome; Uncultured metagenomic species.