Combined texture analysis and machine learning in suspicious calcifications detected by mammography: Potential to avoid unnecessary stereotactical biopsies

Eur J Radiol. 2020 Nov:132:109309. doi: 10.1016/j.ejrad.2020.109309. Epub 2020 Sep 28.

Abstract

Objectives: To investigate whether combined texture analysis and machine learning can distinguish malignant from benign suspicious mammographic calcifications, to find an exploratory rule-out criterion to potentially avoid unnecessary benign biopsies.

Methods: Magnification views of 235 patients which underwent vacuum-assisted biopsy of suspicious calcifications (BI-RADS 4) during a two-year period were retrospectively analyzed using the texture analysis tool MaZda (Version 4.6). Microcalcifications were manually segmented and analyzed by two readers, resulting in 249 image features from gray-value histogram, gray-level co-occurrence and run-length matrices. After feature reduction with principal component analysis (PCA), a multilayer perceptron (MLP) artificial neural network was trained using histological results as the reference standard. For training and testing of this model, the dataset was split into 70 % and 30 %. ROC analysis was used to calculate diagnostic performance indices.

Results: 226 patients (150 benign, 76 malignant) were included in the final analysis due to missing data in 9 cases. Feature selection yielded nine image features for MLP training. Area under the ROC-curve in the testing dataset (n = 54) was 0.82 (95 %-CI: 0.70-0.94) and 0.832 (95 %-CI 0.72-0.94) for both readers, respectively. A high sensitivity threshold criterion was identified in the training dataset and successfully applied to the testing dataset, demonstrating the potential to avoid 37.1-45.7 % of unnecessary biopsies at the cost of one false-negative for each reader.

Conclusion: Combined texture analysis and machine learning could be used for risk stratification in suspicious mammographic calcifications. At low costs in terms of false-negatives, unnecessary biopsies could be avoided.

Keywords: Breast neoplasms; Calcifications; Image-guided biopsy; Machine-learning; Mammography; Texture analysis.

MeSH terms

  • Breast Neoplasms* / diagnostic imaging
  • Calcinosis* / diagnostic imaging
  • Humans
  • Machine Learning
  • Mammography
  • ROC Curve
  • Retrospective Studies