Cell-type-specific hypertranslocation of effectors by the Pseudomonas aeruginosa type III secretion system

Mol Microbiol. 2021 Feb;115(2):305-319. doi: 10.1111/mmi.14617. Epub 2020 Nov 5.

Abstract

Many Gram-negative pathogens use a type III secretion system (T3SS) to promote disease by injecting effector proteins into host cells. Common to many T3SSs is that injection of effector proteins is feedback inhibited. The mechanism of feedback inhibition and its role in pathogenesis are unclear. In the case of P. aeruginosa, the effector protein ExoS is central to limiting effector injection. ExoS is bifunctional, with an amino-terminal RhoGAP and a carboxy-terminal ADP-ribosyltransferase domain. We demonstrate that both domains are required to fully feedback inhibit effector injection. The RhoGAP-, but not the ADP-ribosyltransferase domain of the related effector protein ExoT also participates. Feedback inhibition does not involve translocator insertion nor pore-formation. Instead, feedback inhibition is due, in part, to a loss of the activating trigger for effector injection, and likely also decreased translocon stability. Surprisingly, feedback inhibition is abrogated in phagocytic cells. The lack of feedback inhibition in these cells requires phagocytic uptake of the bacteria, but cannot be explained through acidification of the phagosome or calcium limitation. Given that phagocytes are crucial for controlling P. aeruginosa infections, our data suggest that feedback inhibition allows P. aeruginosa to direct its effector arsenal against the cell types most damaging to its survival.

Keywords: T3SS; phagocytes; translocation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • ADP Ribose Transferases / genetics
  • ADP Ribose Transferases / metabolism*
  • ADP Ribose Transferases / physiology
  • Bacterial Proteins / metabolism
  • Bacterial Toxins / genetics
  • Bacterial Toxins / metabolism*
  • Epithelial Cells / microbiology
  • Feedback, Physiological / physiology
  • GTPase-Activating Proteins
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / metabolism*
  • Type III Secretion Systems / metabolism*
  • Type III Secretion Systems / physiology

Substances

  • Bacterial Proteins
  • Bacterial Toxins
  • GTPase-Activating Proteins
  • Type III Secretion Systems
  • rho GTPase-activating protein
  • ADP Ribose Transferases
  • exoenzyme S