Antiretroviral therapy has slowed the HIV/AIDS pandemic and is currently being used as a prophylactic measure for individuals at high risk of infection. However, concerns over adverse effects of long-term use need to be explored. We hypothesize that this may occur, at least in part, through off-target effects via select steroid receptors (SRs) that broadly regulate multiple physiological processes. We investigated the effects of maraviroc (MVC), tenofovir disoproxil fumarate (TDF), and dapivirine (DPV) on progesterone receptor B (PR-B) transcriptional activity. We found that MVC and TDF activate PR-B transcription in the absence of progestogens on a PR-regulated promoter reporter construct and on endogenous PR-regulated genes. MVC and TDF exhibited no direct binding to PR-B; however, increased PR-B phosphorylation was detected with TDF but not MVC. DPV transactivated gilz and ptgs2 in the absence of progestogens and exhibited PR-B binding while showing no effects on phosphorylation, suggesting that it may activate PR-B through a direct mechanism. Our study shows that potential off-target immunomodulatory effects of MVC, TDF and DPV occur in vitro and these are most likely mediated by different mechanisms of PR-B activation.
Keywords: Antiretroviral drugs; Ligand-independent activation; Progesterone receptor; Progestins.
Copyright © 2020 Elsevier Inc. All rights reserved.