Background: Although aspects of brain morphology have been associated with chronic posttraumatic stress disorder (PTSD), limited work has investigated multimodal patterns in brain morphology that are linked to acute posttraumatic stress severity. In the present study, we utilized multimodal magnetic resonance imaging to investigate if structural covariance networks (SCNs) assessed acutely following trauma were linked to acute posttraumatic stress severity.
Methods: Structural magnetic resonance imaging data were collected around 1 month after civilian trauma exposure in 78 participants. Multimodal magnetic resonance imaging data fusion was completed to identify combinations of SCNs, termed structural covariance profiles (SCPs), related to acute posttraumatic stress severity collected at 1 month. Analyses assessed the relationship between participant SCP loadings, acute posttraumatic stress severity, the change in posttraumatic stress severity from 1 to 12 months, and depressive symptoms.
Results: We identified an SCP that reflected greater gray matter properties of the anterior temporal lobe, fusiform face area, and visual cortex (i.e., the ventral visual stream) that varied curvilinearly with acute posttraumatic stress severity and the change in PTSD symptom severity from 1 to 12 months. The SCP was not associated with depressive symptoms.
Conclusions: We identified combinations of multimodal SCNs that are related to variability in PTSD symptoms in the early aftermath of trauma. The identified SCNs may reflect patterns of neuroanatomical organization that provide unique insight into acute posttraumatic stress. Furthermore, these multimodal SCNs may be potential candidates for neural markers of susceptibility to both acute posttraumatic stress and the future development of PTSD.
Keywords: Data fusion; Multimodal MRI; Neuroimaging; PTSD; Stress; Trauma.
Copyright © 2020 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.