In this study, an attempt has been made to distinguish between nonfatigue and fatigue conditions in surface Electromyography (sEMG) signal using the time frequency distribution obtained from analytic Bump Continuous Wavelet Transform. For the analysis, sEMG signals from biceps brachii muscle of 22 healthy subjects are acquired during isometric contraction protocol. The signals acquired is preprocessed and partitioned into ten equal segments followed by the decomposition of selected segments using analytic Bump wavelets. Further, Singular Value Decomposition is applied to the time frequency distribution matrix and the maximum singular value and entropy feature for each segment are obtained. The usefulness of both the features is estimated using the Wilcoxon sign rank test that gives higher significance with a p < .00001. It is observed that the proposed method is capable of analyzing the fatigue regions in sEMG signals.