Contemporary diffusion MRI based analysis with HARDI, which provides more accurate fiber orientation, can be performed using single or multiple b-values (single or multi-shell). Single shell HARDI cannot provide volume fraction for different tissue types, which can produce bias and noisier results in estimation of fiber ODF. Multi-shell acquisition can resolve this issue. However, it requires more scanning time and is therefore not very well suited in clinical setting. Considering this, we propose a novel deep learning architecture, MSR-Net, for reconstruction of diffusion MRI volumes for some b-value using acquisitions at another b-value. In this work, we demonstrate this for b = 2000 s/mm2 and b = 1000 s/mm2. We learn such a transformation in the space of spherical harmonic coefficients. The proposed network consists of encoder-decoder along-with an attention module and a feature module. We have considered L2 and Content loss for optimizing and improving the performance. We have trained and validated the network using the HCP data-set with standard qualitative and quantitative performance measures.