Atherosclerosis is one of the most common vascular pathologies in the world. Among the most commonly performed endovascular treatments, percutaneous transluminal angioplasty (PTA) has been showing significantly positive clinical outcomes. Due to the complex geometries, material properties and interactions that characterize PTA procedures, finite element analyses of acute angioplasty balloon deployment are limited. In this work, finite element method (FEM) was used to simulate the inflation and deflation of a semi-compliant balloon within the 3D model of a stenosed artery with two different plaque types (lipid and calcified). Self-defined constitutive models for the balloon and the plaque were developed based on experimental and literature data respectively. Balloon deployment was simulated at three different inflation pressures (10, 12 and 14 atm) within the two plaque types. Balloon sizing influence on the arterial elastic recoil obtained immediately after PTA was then investigated. The simulated results show that calcified plaques may lead to higher elastic recoil ratios compared to lipid stenosis, when the same balloon inflation pressures are applied. Also, elastic recoil increases for higher balloon inflation pressure independent of the plaque type. These findings open the way for a data-driven assessment of angioplasty balloon sizing selection and clinical procedures optimization.Clinical Relevance- The FE model developed in this work aims at providing quantitative evaluation of recoil after balloon angioplasty. It may be useful for both manufacturers and clinicians to improve efficiency of angioplasty balloon device design and sizing selection with respect to plaque geometry and constitution, consequently enhancing clinical outcomes.