In this work we present a novel method for the prediction and generation of atherosclerotic plaques. This is performed in a two-step approach, by employing first a multilevel computational plaque growth model and second a correlation between the model's results and the 3D reconstructed follow-up plaques. In particular, computer tomography coronary angiography (CTCA) data and blood tests were collected from patients at two time points. Using the baseline data, the plaque growth is simulated using a multi-level computational model which includes: i) modeling of the blood flow dynamics, ii) modeling of low and high density lipoproteins and monocytes' infiltration in the arterial wall, and the species reactions during the atherosclerotic process, and iii) modeling of the arterial wall thickening. The correlation between the followup plaques and the simulated plaque density distribution resulted to the extraction of a threshold of the plaque density, that can be used to identify plaque areas.Clinical Relevance- The methodology presented in this work is a first step to the prediction of the plaque shape and location of patients with atherosclerosis and could be used as an additional tool for patient-specific risk stratification.