Based on our prior work, we reported the design, synthesis, and biological evaluation of fifty-two new triazolothiadiazine-based analogues of CA-4 and their preliminary structure-activity relationship. Among synthesized compounds, Iab was found to be the most potent derivative possessing IC50 values ranging from single-to double-digit nanomolar in vitro, and also exhibited excellent selectivity over the normal human embryonic kidney HEK-293 cells (IC50 > 100 μM). Further mechanistic studies revealed that Iab significantly blocked tubulin polymerization and disrupted the intracellular microtubule network of A549 cells. Moreover, Iab induced G2/M cell cycle arrest by regulation of p-cdc2 and cyclin B1 expressions, and caused cell apoptosis through up-regulating cleaved PARP and cleaved caspase-3 expressions, and down-regulating of Bcl-2. Importantly, in vivo, Iab effectively suppressed tumor growth of A549 lung cancers in a xenograft mouse model without obvious signs of toxicity, confirming its potential as a promising candidate for cancer treatment.
Keywords: Antiproliferative activity; Structure-activity relationship; Triazolothiadiazine derivatives; Tubulin.
Copyright © 2020 Elsevier Masson SAS. All rights reserved.