Melanocytes are the major cells responsible for skin and fair pigmentation in vertebrates. They localize to hair follicles(HFs) and the epidermis during embryonic development. A reduced number or dysfunction of melanocytes results in pigmentation disorders.Thus, methods for isolation, culture, and identification of melanocytes in mouse hair follicles provide an experimental basis for thestudy of of pigmentation disorders. In the current work, we harvested the melanocytes from the anagen phase dorsal skin of C57BL/6 mice.After its separation from the skin, the dermis was digested, and the HFs were released. HFs were then also digested, and the cells released from HFs were cultured in melanocyte growth medium. Immunofluorescence and immunohistochemistry staining were used to localize the distribution of melanocytes in HFs . Reverse transcription polymerase chain reaction was performed to detect the expression of specific melanocyte marker genes. Immunofluorescence, immunohistochemistry, flow cytometry, and western blot were carried out to detect the expression of marker proteins in cells. 3,4-Dihydroxy-L-phenylalanine (L-DOPA) staining was used to detect the pigmentation functionality of melaonocytes. Based on our results, we conclude that mature and functional melanocytes can be successfully obtained from theHFs, providing a cell model to study pigmentation disorders. The current findings provide novel insights for the treatment of pigmentation disorders by autologous cell transplantation. Further, we believe that issues related to skin damage, insufficient numbers of autologous cells, and autoimmune problems can be resolved in future though the use of functional melanocytes.
Keywords: Cell amplification and identification; Hair follicles; Melanocytes; Study model.
Copyright © 2020 Elsevier GmbH. All rights reserved.