The interaction of 1-Phenyl-3-(pyren-1-yl) urea (LH) and fluoride anion (F-) with a unique ON1-OFF-ON2 fluorescent response has been investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The hydrogen-bonding dynamics and photophysical properties of the complex LH-F, as well as its isolated receptor LH and anion form L-H1, have been studied in detail. We demonstrate that the intermolecular hydrogen bond (N-H…F) of the complex LH-F is greatly enhanced in the electronically excited state. The nonradiative deactivation via electron transfer and internal conversion rather than excited-state intramolecular proton transfer (ESIPT) can be facilitated by the excited state hydrogen bond strengthening. The results have been cross-validated by molecular structure, electronic spectra, frontier molecular orbitals, and infrared spectra as well as hydrogen bond binding energy. These results indicate that the current calculations completely reproduce the experimental results and provide compelling evidence for the sensing mechanism of LH for F-.
Keywords: Fluoride anion; Fluorogenic urea; Hydrogen bond; Sensing mechanism; TDDFT.
Copyright © 2020 Elsevier B.V. All rights reserved.