Feeding rumen-protected Lys (RPL) may be used to increase lactation performance in dairy cows; however, the effect of feeding RPL during the prepartum period and subsequent effect on postpartum performance is not well explored. Therefore, this experiment was conducted to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Heartland Inc., Chicago, IL) prepartum, postpartum, or both on performance, health, and blood metabolites. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 2 dietary treatments: total mixed ration with or without RPL in a randomized, complete block design. A 2 × 2 factorial arrangement of treatments was used. Prepartum (-28 d to calving), animals were fed a diet (forage, 68% of dietary DM) with RPL [PRE-L; 0.54% RPL of dietary dry matter intake (DMI)] or without RPL (control; PRE-C). After calving, half of the cows from each prepartum treatment group were assigned to a diet (forage, 55.5% of dietary DM) with RPL (PRE-L POST-L; PRE-C POST-L; 0.40% RPL of dietary DMI) or without RPL (PRE-C POST-C; PRE-L POST-C) until d 28 postpartum. Cows were milked twice a day and milk samples were taken on 7 ± 1.3, 14 ± 1.4, and 28 ± 1.1 d relative to calving (DRC). Milk yield and DMI were recorded daily. Blood samples were taken for plasma AA analysis on -7 ± 0.5, 0 ± 0.5, 7 ± 0.9, and 14 ± 0.9 DRC. Cows in PRE-L had greater body weight at -2 and -1 wk before calving compared with those in PRE-C, though body weight change from wk -4 to -1 was not different. Body weight (717 ± 6 kg) was greater and DMI (18.1 ± 0.7 kg) tended to be greater for cows in PRE-L POST-L and PRE-L POST-C compared with those that were in PRE-C POST-L and PRE-C POST-C (707 ± 6 and 16.8 ± 0.7 kg, respectively). Energy-corrected milk (48.8 ± 1.9 kg/d), milk fat (1.9 ± 0.1 kg/d), milk true protein (1.4 ± 0.1 kg/d), milk casein (0.6 ± 0.04 kg/d), and milk lactose yields (2.1 ± 0.1 kg/d) were greater for cows in PRE-L POST-L and PRE-L POST-C compared with those that were in PRE-C POST-L and PRE-C POST-C (44.2 ± 1.9, 1.7 ± 0.1, 1.3 ± 0.1, 0.5 ± 0.04, 1.9 ± 0.1 kg/d, respectively). Plasma concentrations of Lys prepartum (69.8 ± 1.8 µM) increased for cows in PRE-L compared with those in PRE-C (62.5 ± 1.3 µM). In conclusion, RPL consumed prepartum tended to increase postpartum DMI and increased energy-corrected milk and milk component yields. This indicates that prepartum supply of intestinally available Lys is pertinent to postpartum performance. However, postpartum supply of intestinally available Lys had no effect on cows' performance.
Keywords: amino acid; lysine; metabolizable protein; transition period.
© 2020, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).