The trade-off between effort and reward is one of the main determinants of behavior, and its alteration is at the heart of major disorders such as depression or Parkinson's disease. Monoaminergic neuromodulators are thought to play a key role in this trade-off, but their relative contribution remains unclear. Rhesus monkeys (Macaca mulatta) performed a choice task requiring a trade-off between the volume of fluid reward and the amount of force to be exerted on a grip. In line with a causal role of noradrenaline in effort, decreasing noradrenaline levels with systemic clonidine injections (0.01 mg/kg) decreased exerted force and enhanced the weight of upcoming force on choices, without any effect on reward sensitivity. Using computational modeling, we showed that a single variable ("effort") could capture the amount of resources necessary for action and control both choices (as a variable for decision) and force production (as a driving force). Critically, the multiple effects of noradrenaline manipulation on behavior could be captured by a specific modulation of this single variable. Thus, our data strongly support noradrenaline's implication in effort processing.