A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency

Cancer Discov. 2021 Feb;11(2):408-423. doi: 10.1158/2159-8290.CD-20-0465. Epub 2020 Oct 12.

Abstract

For anthracycline-based chemotherapy to be immunogenic, dying cancer cells must release annexin A1 (ANXA1) that subsequently interacts with the pattern recognition receptor, formyl peptide receptor 1 (FPR1), on the surface of dendritic cells (DC). Approximately 30% of individuals bear loss-of-function alleles of FPR1, calling for strategies to ameliorate their anticancer immune response. Here, we show that immunotherapy with a ligand of Toll-like receptor-3, polyinosinic:polycytidylic acid (pIC), restores the deficient response to chemotherapy of tumors lacking ANXA1 developing in immunocompetent mice or those of normal cancers growing in FPR1-deficient mice. This effect was accompanied by improved DC- and T-lymphocyte-mediated anticancer immunity. Of note, carcinogen-induced breast cancers precociously developed in FPR1-deficient mice as compared with wild-type controls. A similar tendency for earlier cancer development was found in patients carrying the loss-of-function allele of FPR1. These findings have potential implications for the clinical management of FPR1-deficient patients. SIGNIFICANCE: The loss-of-function variant rs867228 in FPR1, harbored by approximately 30% of the world population, is associated with the precocious manifestation of breast, colorectal, esophageal, and head and neck carcinomas. pIC restores deficient chemotherapeutic responses in mice lacking Fpr1, suggesting a personalized strategy for compensating for the FPR1 defect.This article is highlighted in the In This Issue feature, p. 211.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Transformation, Neoplastic / drug effects*
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / genetics
  • Disease Models, Animal
  • Humans
  • Ligands*
  • Mice
  • Mice, Transgenic
  • Poly I-C / pharmacology
  • Poly I-C / therapeutic use*
  • Receptors, Formyl Peptide / genetics
  • Toll-Like Receptor 3*

Substances

  • FPR1 protein, human
  • Ligands
  • Receptors, Formyl Peptide
  • TLR3 protein, human
  • Toll-Like Receptor 3
  • Poly I-C