Objective: Several studies have shown that closed-loop automated insulin delivery (the artificial pancreas) improves glucose control compared with sensor-augmented pump therapy. We aimed to confirm these findings using our automated insulin delivery system based on the iPancreas platform. Research Design and Methods: We conducted a two-center, randomized crossover trial comparing automated insulin delivery with sensor-augmented pump therapy in 36 adults with type 1 diabetes. Each intervention lasted 12 days in outpatient free-living conditions with no remote monitoring. The automated insulin delivery system used a model predictive control algorithm that was a less aggressive version of our earlier dosing algorithm to emphasize safety. The primary outcome was time in the range 3.9-10.0 mmol/L. Results: The automated insulin delivery system was operational 90.2% of the time. Compared with the sensor-augmented pump therapy, automated insulin delivery increased time in range (3.9-10.0 mmol/L) from 61% (interquartile range 53-74) to 69% (60-73; P = 0.006) and increased time in tight target range (3.9-7.8 mmol/L) from 37% (30-49) to 45% (35-51; P = 0.011). Automated insulin delivery also reduced time spent below 3.9 and 3.3 mmol/L from 3.5% (0.8-5.4) to 1.6% (1.1-2.7; P = 0.0021) and from 0.9% (0.2-2.1) to 0.5% (0.2-1.1; P = 0.0122), respectively. Time spent below 2.8 mmol/L was 0.2% (0.0-0.6) with sensor-augmented pump therapy and 0.1% (0.0-0.4; P = 0.155) with automated insulin delivery. Conclusions: Our study confirms findings that automated insulin delivery improves glucose control compared with sensor-augmented pump therapy. ClinicalTrials.gov no. NCT02846831.
Keywords: Artificial pancreas; Closed-loop; Randomized-controlled trial; Sensor-augmented pump therapy.