The Mineralocorticoid Receptor Antagonist Eplerenone Suppresses Interstitial Fibrosis in Subcutaneous Adipose Tissue in Patients With Type 2 Diabetes

Diabetes. 2021 Jan;70(1):196-203. doi: 10.2337/db20-0394. Epub 2020 Oct 14.

Abstract

Activation of the mineralocorticoid receptor (MR) may promote dysfunctional adipose tissue in patients with type 2 diabetes, where increased pericellular fibrosis has emerged as a major contributor. The knowledge of the association among the MR, fibrosis, and the effects of an MR antagonist (MRA) in human adipocytes remains very limited. The present substudy, including 30 participants, was prespecified as part of the Mineralocorticoid Receptor Antagonist in Type 2 Diabetes (MIRAD) trial, which randomized patients to either high-dose eplerenone or placebo for 26 weeks. In adipose tissue biopsies, changes in fibrosis were evaluated by immunohistological examination and by the expression of mRNA and protein markers of fibrosis. Treatment with an MRA reduced pericellular fibrosis, synthesis of the major subunits of collagen types I and VI, and the profibrotic factor α-smooth muscle actin compared with placebo in subcutaneous adipose tissue. Furthermore, we found decreased expression of the MR and downstream molecules neutrophil gelatinase-associated lipocalin, galectin-3, and lipocalin-like prostaglandin D2 synthase with an MRA. In conclusion, we present original data demonstrating reduced fibrosis in adipose tissue with inhibition of the MR, which could be a potential therapeutic approach to prevent the extracellular matrix remodeling of adipose tissue in type 2 diabetes.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Aged
  • Collagen Type I / metabolism
  • Collagen Type VI / metabolism
  • Diabetes Mellitus, Type 2 / metabolism
  • Diabetes Mellitus, Type 2 / pathology*
  • Eplerenone / pharmacology
  • Eplerenone / therapeutic use*
  • Female
  • Fibrosis / drug therapy*
  • Fibrosis / metabolism
  • Fibrosis / pathology
  • Humans
  • Male
  • Middle Aged
  • Mineralocorticoid Receptor Antagonists / pharmacology
  • Mineralocorticoid Receptor Antagonists / therapeutic use*
  • Subcutaneous Fat / drug effects*
  • Subcutaneous Fat / metabolism
  • Subcutaneous Fat / pathology

Substances

  • Actins
  • Collagen Type I
  • Collagen Type VI
  • Mineralocorticoid Receptor Antagonists
  • Eplerenone

Associated data

  • figshare/10.2337/figshare.13050743
  • EudraCT/2015-002519-14