Antiradical Properties of trans-2-(4-substituted-styryl)-thiophene

J Fluoresc. 2021 Jan;31(1):51-61. doi: 10.1007/s10895-020-02629-5. Epub 2020 Oct 14.

Abstract

2-substituted thiophene compounds with electron donating and electron withdrawing p-phenyl substitution were synthesized and studied their radical scavenging properties using DPPH assay and DFT method. It is shown that p-hydroxy and p-amino phenyl substituted compound exhibit radical scavenging activity. From DFT and radical scavenging studies, a correlation between IC50 with the bond dissociation enthalpy, proton affinity, ground state dipole moment and optical band gap of compound is found. Compounds 1-3 with electron withdrawing substituent (NO2, CN, Cl) do not show any radical scavenging properties, whereas compounds 6-7 with electron donating substituent (OH, NH2) show antiradical properties. Further, the antiradical activity is reduced drastically by replacing the -OH and -NH2 with methoxy and -N-alkylating group respectively in 6 and 7. The compound with p-hydroxy phenyl substitution, exhibits stronger antiradical activity as compared to the p-amino phenyl substitution due to smaller O-H bond dissociation energy as compared to the N-H bond. From DPPH and DFT studies, it is suggested that the radical scavenging activity in 2-substituted thiophene is occurred through proton transfer mechanism. The other possible SET, SPLET mechanisms are also corroborated. Graphical Abstract Antiradical properties of trans-2-(4-substituted-styryl)-thiophene Anamika Gusain, Naresh Kumar, Jagdeep Kumar, Gunjan Pandey, Prasanta Kumar Hota.

Keywords: Absorption; Antioxidant ability; Bond dissociation energy; Density functional theory; Fluorescence; Ionization energy; Phenol; Proton affinity; Stilbene; Thiophene.