Audit of homograft valve bank

Indian J Thorac Cardiovasc Surg. 2020 Jan;36(1):14-20. doi: 10.1007/s12055-019-00829-8. Epub 2019 Apr 30.

Abstract

Introduction: Even today, the search for the ideal cardiac valve continues. With advantages of having superior flow dynamics, avoidance of anticoagulation, and resistance to infection, homograft has been shown to have an edge over conventional prosthetic and bioprosthetic valves. But they suffer from disadvantages of limited availability and durability. Our center operates one of the oldest functioning valve banks in the country. We present our experience with homograft valve banking with antibiotic and cryopreserved homografts spread over a quarter century.

Methods: For donor selection, procurement, sterilization, and preservation, the recommendations of the American Association of Tissue Banks are being followed in accordance with statutory provisions of the Transplantation of Human Organs Act, 1994.

Results: During 25-year period (1993-2017), 777 hearts were procured. Age of the donors ranged from 2 to 60 years and hearts were procured within 24 h of death. A total of 1646 homografts (774 pulmonary, 774 aortic, 60 mitral valves, 20 descending thoracic aortae, and 18 monocusps) were harvested. A total of 546 (32%) homografts were rejected for various reasons. Nine hundred sixty-seven (56.7%) homografts were used in different procedures. Of these, 478 were pulmonary homografts, 425 were aortic homografts, 39 mitral homografts, 18 monocusps, and 7 descending thoracic aorta homografts. One hundred fifty-four (16%) homografts were antibiotic preserved and the rest 813 (84%) were cryopreserved.

Conclusions: It is possible to run a homograft valve bank with minimum costs. Though, cryopreservation is more expensive, it provides an opportunity to store the valves for an indefinite period and maintain an uninterrupted supply of homografts.

Keywords: Cryopreservation; Homograft; Valve bank.