Bisphosphonates and denosumab are commonly used antiresorptive therapies in patients with bone metastasis and osteoporosis. Medication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of these drugs, and infection has been recognized as a contributing factor. Current therapeutic options for MRONJ show limited effectiveness, therefore necessitating novel treatment strategies. Bisphosphonates have recently been reported to induce the expression of antimicrobial peptides (AMPs), an inherent component of the immune system. Therefore, the aim of the present study was to investigate and compare the influence of the anti-RANKL antibody denosumab and bisphosphonates on the gene expression of selected AMPs: human α-defensin-1, human α-defensin-3, human β-defensin-1, and human β-defensin-3. Bone specimens were collected from patients with MRONJ who had been treated with bisphosphonates (n = 6) or denosumab (n = 6), and from healthy subjects (n = 6) with no history of treatment with bone metabolism-influencing drugs. Reverse transcription-quantitative polymerase chain reaction was used to quantify the expression levels of selected AMPs. Samples from patients treated with denosumab showed significantly higher mRNA expression of human α-defensin-3 and human β-defensin-3 than those from healthy subjects. This finding is similar to previously described upregulated expression of human defensins in patients with MRONJ after bisphosphonates treatment. This suggests that the elevated expression of defensins may be at least a part of the mechanism underlying the pathogenesis of osteonecrosis induced by antiresorptive therapies, which can serve as a new target for potential treatment of MRONJ.
Keywords: Bisphosphonate; Defensin; Denosumab; Osteonecrosis.
Copyright © 2020 The Authors. Published by Elsevier GmbH.. All rights reserved.