It is well known that an increased viscosity slows down fluid dynamics. Here we show that this intuitive rule is not general and can fail for liquids flowing in confined liquid-repellent systems. A gravity-driven, highly viscous glycerol droplet inside a sealed superhydrophobic capillary is moving more than 10 times faster than a water droplet with three-orders-of-magnitude lower viscosity. Using tracer particles, we show that the low-viscosity droplets are rapidly rotating internally, with flow velocities greatly exceeding the center-of-mass velocity. This is in stark contrast to the faster moving high-viscosity droplets with nearly vanishing internal flows. The anomalous viscosity-enhanced flow is caused by a viscosity-suppressed deformation of the droplet-air interface and a hydro- and aerodynamic coupling between the droplet and the air trapped within the micro/nanostructures (plastron). Our work demonstrates the unexpected role of the plastron in controlling fluid flow beyond the mere reduction in contact area and friction.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).