Hsp65-Producing Lactococcocus lactis Prevents Antigen-Induced Arthritis in Mice

Front Immunol. 2020 Sep 23:11:562905. doi: 10.3389/fimmu.2020.562905. eCollection 2020.

Abstract

Oral tolerance is the physiological process that enables the immune system to differentiate between harmless dietary and microbiota antigens from pathogen derived antigens. It develops at the mucosal surfaces and can result in local and systemic regulatory and anti-inflammatory effects. Translation of these benefits to the clinical practice faces limitations involving specificity and doses of antigen as well as regimens of feeding. To circumvent these problems, we developed a recombinant Hsp65 delivered by the acid lactic bacteria Lactococcus lactis NCDO 2118 directy in the intestinal mucosa. Hsp65 is a ubiquitous protein overexpressed in inflamed tissues and capable of inducing immunoregulatory mechanisms. L. lactis has probiotic properties and is commonly and safely used in dairy products. In this study, we showed that continuous delivery of HSP65 in the gut mucosa by L. lactis is a potent tolerogenic stimulus inducing regulatory CD4+LAP+ T cells that prevented collagen-induced and methylated bovine serum albumin-induced arthritis in mice. Clinical and histological signs of arthritis were inhibited as well as levels of inflammatory cytokines such as IL-17 and IFN-γ, serum titers of anti-collagen antibodies and rheumatoid factor. Oral administration of L. lactis induced alterations in microbiota composition toward an increased abundance of anaerobic bacteria such as Bifidobacterium and Lactobacillus. Tolerance to HSP65 and arthritis prevention induced by the recombinant L. lactis was associated with increase in IL-10 production by B cells and it was dependent on LAP+ T cells, IL-10 and TLR2 signaling. Therefore, HSP65-producing treatment induced effective tolerance and prevented arthritis development suggesting it can be used as a therapeutic tool for autoimmune diseases.

Keywords: Lactococcus lactis; arthritis; autoimmunity; heat shock proteins; oral tolerance; probiotic bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Arthritis / chemically induced*
  • Arthritis / immunology
  • Arthritis / prevention & control*
  • Autoimmune Diseases / prevention & control
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • CD4-Positive T-Lymphocytes / immunology
  • Collagen / adverse effects*
  • Cytokines / metabolism
  • Disease Models, Animal
  • Female
  • Gastrointestinal Microbiome
  • Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / metabolism*
  • Immune Tolerance
  • Intestinal Mucosa / immunology
  • Lactococcus lactis / genetics
  • Lactococcus lactis / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Probiotics / administration & dosage
  • Recombinant Proteins / metabolism
  • Serum Albumin, Bovine / adverse effects*

Substances

  • Bacterial Proteins
  • Cytokines
  • Heat-Shock Proteins
  • Recombinant Proteins
  • methylated bovine serum albumin
  • Serum Albumin, Bovine
  • Collagen