In this study, we describe the construction of an "off-on" fluorescent probe based on carbon dots (CDs) and silver nanoparticles (AgNPs) mixture for sensitive and selective detection of cysteamine. By mixing AgNPs with CDs solution, the fluorescence of CDs was significantly decreased due to the inner filter effect (IFE). Upon addition of cysteamine to the mixed aqueous of CDs and AgNPs, the silver-sulfur bond between cysteamine and AgNPs caused AgNPs to aggregate, and the quenched fluorescence of CDs could in turn be recovered. The probe was employed to quantitatively detect cysteamine, and the results showed that it could detect cysteamine in a concentration range of 2-16 μM with the detection limit of 0.35 μM (signal-to-noise ratio of 3). The detection of cysteamine spiked into bovine serum samples showed high recovery rates ranging from 95.5 to 111.7%. More importantly, the developed probe had low cytotoxicity and was successfully used for in vivo imaging of HepG2 cells.
Keywords: Carbon dots; Cysteamine; Fluorescence; Inner filter effect; Living cells imaging.
Copyright © 2020 Elsevier B.V. All rights reserved.