The development of highly sensitive electrochemiluminescence (ECL) immunosensors by using functional nanoparticles as signal amplifiers is a solution towards sensitive determination of many low concentration disease biomarkers. Herein, a sensitive aptamer-based, sandwich-type surface plasmon enhanced electrochemiluminescence (SPEECL) immunosensor was demonstrated for the detection of cardiac troponin I (cTnI), by means of aptamer conjugated CdS QDs and AuNPs as ECL luminophores and plasmon sources, respectively, in which Tro4 aptamer was used as a capture probe for cTnI and Tro6 aptamer as a detecting probe. The signal of the developed SPEECL system showed ~ 5-fold increment as compared to that of without AuNPs. Using this ECL platform for the detection of cTnI, a linear range and the limit of detection (LOD) were found to be 1 fg/mL - 10 ng/mL and 0.75 fg/mL, respectively.
Keywords: Aptamer; Surface plasmon enhanced electrochemiluminescence; cTnI.
Copyright © 2020 Elsevier B.V. All rights reserved.