Signaling pathways that promote oligodendrocyte development improve oligodendrocyte regeneration and myelin recovery from demyelinating pathologies. Sox factors critically control myelin gene expression and oligodendroglial fate, but little is known about signaling events underlying Sox-mediated oligodendroglial regeneration. In this study of the SoxF member Sox17, we demonstrate that Sox17-induced oligodendrocyte regeneration in adult myelin lesions occurs by suppressing lesion-induced Wnt/beta-catenin signaling which is inhibitory to oligodendrocyte regeneration and by increasing Sonic Hedgehog/Smoothened/Gli2 activity. Hedgehog signaling through Smoothened critically supports adult oligodendroglial viability and is an upstream regulator of beta-catenin. Gli2 ablation in adult oligodendrocyte progenitor cells indicates that Gli2 regulates beta-catenin differentially in wild-type and Sox17-overexpressing white matter. Myelin lesions in Sox17-deficient mice show beta-catenin hyperactivation, regenerative failure, and loss of oligodendrogenesis, despite exogenous Hedgehog stimulation. These studies indicate the benefit of Sox17 signaling targets to enhance oligodendrocyte regeneration after demyelination injury by modulating both Hedgehog and Wnt/beta-catenin signaling.
Keywords: Functional Aspects of Cell Biology; Molecular Neuroscience; Neuroscience.
© 2020 The Author(s).