With advances in neonatology, a greater percentage of premature infants now survive and consequently, diseases of lung development, including bronchopulmonary dysplasia and neonatal respiratory distress syndrome, have become more common. However, few studies have addressed the association between fetal lung development and long non-coding RNA (lncRNA). In the present study, right lung tissue samples of fetuses at different gestational ages were collected within 2 h of the induction of labor in order to observe morphological discrepancies. An Affymetrix Human GeneChip was used to identify differentially expressed lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. A total of 687 lncRNAs were identified to be differentially expressed among three groups of fetal lung tissue samples corresponding to the three embryonic periods. A total of 34 significantly upregulated and 12 significantly downregulated lncRNAs (fold-change, ≥1.5; P<0.05) were detected at different time points (embryonic weeks 7-16, 16-25 and 25-28) of fetal lung development and compared with healthy tissues Expression changes in lncRNAs n340848, n387037, n336823 and ENST00000445168 were validated by reverse transcription-quantitative PCR and the results were consistent with the GeneChip results. These novel identified lncRNAs may have roles in fetal lung development and the results of the present study may lay the foundation for subsequent in-depth studies into lncRNAs in fetal lung development and subsequent clarification of the pathogenesis of neonatal pulmonary diseases.
Keywords: bioinformatics analysis; fetal lung development; long non-coding RNA; microarray.
Copyright © 2020, Spandidos Publications.