Background: Knowledge is lacking regarding deficits in selective attention and their underlying biological mechanisms during early stages of schizophrenia. The present study examined the N2pc, a neurophysiological index of covert spatial attention, and its cortical sources at first psychotic episode in the schizophrenia spectrum (FESz).
Methods: Neurophysiological responses measured simultaneously with magnetoencephalography (MEG) and electroencephalography (EEG) during pop-out and serial search tasks were compared between 32 FESz and 32 matched healthy controls (HC). Mean scalp-recorded N2pc was measured from a cluster of posterior-lateral EEG electrodes. Cortical source-resolved MEG activity contributing to the N2pc signal was derived for the intraparietal sulcus (IPS) and lateral occipital complex (LOC).
Results: Group differences in EEG N2pc varied by task demand. FESz exhibited reduced N2pc amplitude during pop-out (p < .01), but not serial search (p = .11). Furthermore, group differences in N2pc-related MEG cortical activity varied by task demand and cortical region. Compared to HC, FESz exhibited greater IPS during serial search (p < .01).
Discussion: Reductions in EEG N2pc amplitude indicate an impairment of visuo-spatial attention evident at an individual's first psychotic episode, specifically during conditions emphasizing bottom-up processing. Examination of its cortical sources with MEG revealed that, compared to HC, FESz engaged parietal structures to a greater extent during the serial search condition. This pattern suggests a less efficient, more resource intensive strategy employed by FESz in response to a minimal demand on attention. The greater reliance on this controlled attentional network may negatively impact real-world functions with much greater complexity and attentional demands.
Keywords: First-episode; Magnetoencephalography; N2pc; Schizophrenia spectrum; Selective attention; Visual search.
Copyright © 2020 Elsevier B.V. All rights reserved.