3D Bioinspired Microstructures for Switchable Repellency in both Air and Liquid

Adv Sci (Weinh). 2020 Sep 6;7(20):2000878. doi: 10.1002/advs.202000878. eCollection 2020 Oct.

Abstract

In addition to superhydrophobicity/superoleophobicity, surfaces with switchable water/oil repellency have also aroused considerable attention because of their potential values in microreactors, sensors, and microfluidics. Nevertheless, almost all those as-prepared surfaces are only applicable for liquids with higher surface tension (γ > 25.0 mN m-1) in air. In this work, inspired by some natural models, such as lotus leaf, springtail skin, and filefish skin, switchable repellency for liquids (γ = 12.0-72.8 mN m-1) in both air and liquid is realized via employing 3D deformable multiply re-entrant microstructures. Herein, the microstructures are fabricated by a two-photon polymerization based 3D printing technique and the reversible deformation is elaborately tuned by evaporation-induced bending and immersion-induced fast recovery (within 30 s). Based on 3D controlled microstructural architectures, this work offers an insightful explanation of repellency/penetration behavior at any three-phase interface and starts some novel ideas for manipulating opposite repellency by designing/fabricating stimuli-responsive microstructures.

Keywords: 3D printing; liquid responsive bending; re‐entrant microstructures; switchable repellency; universal repellency.