The definition of medical ultrasound images is strongly limited by the need for low examination frequencies which is imposed by the high attenuation of acoustic waves in tissues. The filtering effect of imaging systems is described and quantified for echography, transmission tomography and reflection tomography. Improvement of image definition is demonstrated to be the result of a numerical restoration of the received echoes implemented, in the present case, by a simplified Kalman filter. The improvement in definition obtained is emphasized on simulated data and tissue images. The comparison between the results obtained from the three techniques shows that: if only echography provides a real-time acquisition of signals, tomographic methods lead to faster processing associated with a better signal-to-noise ratio on the reconstructed images, and reflection tomography offers the best definition.