Ion Mobility Spectrometry with High Ion Utilization Efficiency Using Traveling Wave-Based Structures for Lossless Ion Manipulations

Anal Chem. 2020 Nov 17;92(22):14930-14938. doi: 10.1021/acs.analchem.0c02100. Epub 2020 Oct 26.

Abstract

Ion packets introduced from gates, ion funnel traps, and other conventional ion injection mechanisms produce ion pulse widths typically around a few microseconds or less for ion mobility spectrometry (IMS)-based separations on the order of 100 milliseconds. When such ion injection techniques are coupled with ultralong path length traveling wave (TW)-based IMS separations (i.e., on the order of seconds) using structures for lossless ion manipulations (SLIMs), typically very low ion utilization efficiency is achieved for continuous ion sources [e.g., electrospray ionization (ESI)]. Even with the ability to trap and accumulate much larger populations of ions than being conventionally feasible over longer time periods in SLIM devices, the subsequent long separations lead to overall low ion utilization. Here, we report the use of a highly flexible SLIM arrangement, enabling concurrent ion accumulation and separation and achieving near-complete ion utilization with ESI. We characterize the ion accumulation process in SLIM, demonstrate >98% ion utilization, and show both increased signal intensities and measurement throughput. This approach is envisioned to have broad utility to applications, for example, involving the fast detection of trace chemical species.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ion Mobility Spectrometry / methods*
  • Signal-To-Noise Ratio
  • Spectrometry, Mass, Electrospray Ionization