Facilitate Angiogenesis and Neurogenesis by Growth Factors Integrated Decellularized Matrix Hydrogel

Tissue Eng Part A. 2021 Jun;27(11-12):771-787. doi: 10.1089/ten.TEA.2020.0227. Epub 2020 Nov 20.

Abstract

Neurological functional recovery depends on the synergistic interaction between angiogenesis and neurogenesis after peripheral nerve injury (PNI). Decellularized nerve matrix hydrogels have drawn much attention and been considered as potential therapeutic biomaterials for neurovascularization, due to their intrinsic advantages in construction of a growth-permissive microenvironment, strong affinity to multiple growth factors (GFs), and promotion of neurite outgrowth. In the present study, nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were incorporated into porcine decellularized nerve matrix hydrogel (pDNM-gel) for PNI treatment. Both GFs bound strongly to pDNM-gel and underwent a controlled release manner, which showed facilitated axonal extension and vascular-like tube formation in vitro. Especially, a companion growth was identified when human umbilical vein endothelial cells and neurons were cocultured on the GFs containing pDNM-gel. In a crushed rat sciatic nerve model, the incorporated NGF and VEGF appeared to contribute for axonal growth and neovascularization correspondingly but separately. Both GFs were equally important in improving nerve functional recovery after in situ administration. These findings indicate that pDNM-gel is not only a bioactive hydrogel-based material that can be used alone, but also serves as suitable carrier of multiple GFs for promoting an effective PNI repair. Impact statement Decellularized matrix hydrogel derived from nerve tissue has demonstrated its effectiveness in promoting nerve reinnervation, remyelination, and functionalization. Meanwhile, angiogenesis is highly desirable for treatment of long-distance peripheral nerve defects. To this end, we incorporated both vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) into porcine decellularized nerve matrix hydrogel (pDNM-gel) to induce neovascularization and neuroregeneration. At the cellular level, the pDNM-gel with both growth factors (GFs) exhibited significant capability in promoting axonal elongation, Schwann cell proliferation and migration, as well as vessel/nerve interaction. In crushed peripheral nerve injury (PNI) rat model, the integrated VEGF was more favorable for angiogenesis, whereas NGF mainly contributed to neurogenesis. However, the combination of both GFs in pDNM-gel highly facilitated motor functional recovery, highlighting the therapeutic promise of decellularized matrix hydrogel for growth factor delivery toward neuroprotection and neuroregeneration after PNI.

Keywords: angiogenesis; decellularized nerve matrix; nerve growth factor; nerve regeneration; vascular endothelial growth factor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Hydrogels* / pharmacology
  • Neovascularization, Physiologic*
  • Nerve Growth Factor*
  • Nerve Regeneration
  • Neurogenesis*
  • Rats
  • Sciatic Nerve
  • Swine
  • Vascular Endothelial Growth Factor A*

Substances

  • Hydrogels
  • Vascular Endothelial Growth Factor A
  • Nerve Growth Factor