Suspended particulate organic matter (SPOM) plays a connective role in global biogeochemical carbon cycles and energy flows in aquatic ecosystems. However, little is known about the occurrence and source of SPOM in lake environment and their driving factors across nationwide scale. Here, we utilize the molecular markers of n-alkanes and their fingerprints in 46 typical lakes and reservoirs with different water depths across China from both sides of the Hu Line to study this issue. Σ29n-alkanes, Σ biogenic n-alkanes and Σ anthropogenic n-alkanes ranged from 104.8 to 10332 ng·L-1, from 88.5 to 4843 ng·L-1, and from 16.2 to 5488 ng·L-1, respectively. Their occurrences were only associated with water depth. Then, we compared the differences of carbon-chain distribution of both biogenic and anthropogenic n-alkanes and related proxies in different lake groups. The profiles of different biogenic and anthropogenic n-alkanes posed large differences in different lake groups. Finally, linear discriminant analysis (LDA) was applied to test the possible effects of geographical location and water depth on the holistic differences of SPOM in different lakes and reservoirs across China. The results illustrated that both geographical location and water depth were important driving factors for the holistic differences of SPOM in different lakes and reservoirs across China. Intensive anthropogenic activities narrowed the differences between shallow and deep lakes in eastern China. In conclusion, this study provided new insights into the driving factor analysis of SPOM in lakes and reservoirs on large scale.
Keywords: Geographical location; Lake environment; Linear discriminant analysis (LDA); N-alkane fingerprints; Suspended particulate organic matter (SPOM); Water depth.
Copyright © 2020 Elsevier B.V. All rights reserved.