Polymyxin resistance (PR) threatens the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. PR frequently arises through chemical modification of the lipid A portion of lipopolysaccharide. Various mutations are implicated in PR, including in three two-component systems-CrrA/B, PmrA/B, and PhoP/Q-and the negative regulator MgrB. Few have been functionally validated. Therefore, here we adapt a CRISPR-Cas9 system to CRKP to elucidate how mutations in clinical CRKP isolates induce PR. We demonstrate that CrrB is a positive regulator of PR, and common clinical mutations lead to the addition of both 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosophethanolamine (pEtN) to lipid A, inducing notably higher polymyxin minimum inhibitory concentrations than mgrB disruption. Additionally, crrB mutations cause a significant virulence increase at a fitness cost, partially from activation of the pentose phosphate pathway. Our data demonstrate the importance of CrrB in high-level PR and establish important differences across crrB alleles in balancing resistance with fitness and virulence.
Keywords: CRISPR-Cas9; CrrB; K. pneumoniae virulence; Klebsiella pneumoniae; antimicrobial resistance; colistin resistance; fitness; polymyxin resistance.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.