Mitigation of photon background in nanoplasmonic all-on-chip Raman sensors

Opt Express. 2020 Oct 26;28(22):33564-33572. doi: 10.1364/OE.408638.

Abstract

In the quest for a more compact and cheaper Raman sensor, photonic integration and plasmonic enhancement are central. Nanoplasmonic slot waveguides exhibit the benefits of SERS substrates while being compatible with photonic integration and mass-scale (CMOS) fabrication. A difficulty in pursuing further integration of the Raman sensor with lasers, spectral filters, spectrometers and interconnecting waveguides lies in the presence of a photon background generated by the excitation laser field in any dielectric waveguide constituting those elements. Here, we show this problem can be mitigated by using a multi-mode interferometer and a nanoplasmonic slot waveguide operated in back-reflection to greatly suppress the excitation field behind the sensor while inducing very little photon background.