Cell cycle events and expression of cell cycle regulators are determining factors in differential grain filling in rice spikelets based on their spatial location on compact panicles

Funct Plant Biol. 2021 Feb;48(3):268-285. doi: 10.1071/FP20196.

Abstract

Rice being a staple crop for human, its production is required to be increased significantly, particularly keeping in view the expected world's population of 9.6 billion by the year 2050. In this context, although the rice breeding programs have been successful in increasing the number of spikelets per panicle, the basal spikelets remain poorly filled, undermining the yield potential. The present study also found the grain filling to bear negative correlation with the panicle grain density. The poorly filled basal spikelets of the compact-panicle cultivars showed a lower endosperm cell division rate and ploidy status of the endosperm nuclei coupled with no significant greater expression of CYCB;1 and CYCH;1 compared with the apical spikelets, unlike that observed in the lax-panicle cultivars, which might have prevented them from overcoming apical dominance. Significantly greater expression of CYCB2;2 in the basal spikelets than in the apical spikelets might also have prevented the former to enter into endoreduplication. Furthermore, expression studies of KRPs in the caryopses revealed that a higher expression of KRP;1 and KRP;4 in the basal spikelets than in the apical spikelets of the compact-panicle cultivars could also be detrimental to grain filling in the former, as KRPs form complex primarily with CDKA-CYCD that promotes S-phase activity and G1/S transition, and thus inhibits endosperm cell division. The study indicates that targeted manipulation of expression of CYCB1;1, CYCB2;2, CYCH1;1, KRP;1 and KRP4 in the basal spikelets of the compact-panicle cultivars may significantly improve their yield performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Division
  • Edible Grain
  • Oryza* / genetics
  • Plant Breeding
  • Plant Proteins / genetics

Substances

  • Plant Proteins