[Sedimentary Diatom Records Reveal the Succession of Ecosystem in Lake Xihu, Dali over the Past 50 Years]

Huan Jing Ke Xue. 2020 Oct 8;41(10):4572-4580. doi: 10.13227/j.hjkx.202003293.
[Article in Chinese]

Abstract

In recent decades, intense human activities have caused a decline in many lake ecosystems in Yunnan Province, rendering the transformation of the lake from a clear macrophyte-dominated state to a turbid phytoplankton-dominated state. Improved understanding of the ecological changes in lake ecosystem has significant implications for management. In this study, a small lake in Dali Prefecture of Yunnan Province, i.e., Lake Xihu, was selected. Combined with diatom records and physicochemical proxies from the lake sediments, this paper focuses on the long-term ecological changes in Lake Xihu, Dali since the mid-1960s. The results show that the Lake Xihu, Dali has undergone a significant shift in stable states over the past 50 years. Prior to 2000, the benthic-epiphytic species (i.e., Cocconeis placentula, Staurosira construens, Gomphonema angustum, and Achnanthidium minutissimum) dominated in diatom assemblages, indicating oligotrophic conditions; since 2000, benthic-epiphytic species (i.e., Encyonopsis microcephala and Navicula cryptocephala) and planktonic species (i.e., Cyclotella atomus, Cyclotella meneghiniana, Stephanodiscus hantzschii, and Aulacoseira granulata) dominated successively, indicating mesotrophic to eutrophic conditions. Principal component analysis based on the diatom assemblages in temporal scale showed the response of diatoms succession to nutrients. Redundancy analysis also confirmed that nutrient enrichment was the main driving force for the succession of diatom assemblages in Lake Xihu, Dali. In the past 50 years, climate change and human activities (i.e., agricultural reclamation, fertilization, animal husbandry, and fishery) have enhanced the accumulation of nutrients in the lake. The continuous loading of nutrients promoted the propagation of planktonic algae, and also the productivity of the lake, rendering the transformation to a turbid phytoplankton-dominated state.

Keywords: Lake Xihu, Dali; diatom community; ecosystem; regime shift; shallow lakes.

MeSH terms

  • Animals
  • China
  • Climate Change
  • Diatoms*
  • Ecosystem
  • Lakes*