Objectives: Wallerian degeneration (WD) is a well-known process after nerve injury. In this study, occurrence of remote intramedullary signal changes, consistent with WD, and its correlation with clinical and neurophysiological impairment were assessed after traumatic spinal cord injury (tSCI).
Methods: In 35 patients with tSCI, WD was evaluated by two radiologists on T2-weighted images of serial routine MRI examinations of the cervical spine. Dorsal column (DC), lateral corticospinal tract (CS), and lateral spinothalamic tract (ST) were the analyzed anatomical regions. Impairment scoring according to the American Spinal Injury Association Impairment Scale (AIS, A-D) as well as a scoring system (0-4 points) for motor evoked potential (MEP) and sensory evoked potential (SEP) was included. Mann-Whitney U test was used to test for differences.
Results: WD in the DC occurred in 71.4% (n = 25), in the CS in 57.1% (n = 20), and in 37.1% (n = 13) in the ST. With WD present, AIS grades were worse for all tracts. DC: median AIS B vs D, p < 0.001; CS: B vs D, p = 0.016; and ST: B vs D, p = 0.015. More pathological MEP scores correlated with WD in the DC (median score 0 vs 3, p < 0.001) and in the CS (0 vs 2, p = 0.032). SEP scores were lower with WD in the DC only (1 vs 2, p = 0.031).
Conclusions: WD can be detected on T2-weighted scans in the majority of cervical spinal cord injury patients and should be considered as a direct effect of the trauma. When observed, it is associated with higher degree of impairment.
Key points: • Wallerian degeneration is commonly seen in routine MRI after traumatic spinal cord injury. • Wallerian degeneration is visible in the anatomical regions of the dorsal column, the lateral corticospinal tract, and the lateral spinothalamic tract. • Presence of Wallerian degeneration is associated with higher degree of impairment.
Keywords: Magnetic resonance imaging; Observational study; Spinal cord; Trauma; Wallerian degeneration.