Pigs are one of several host species for Toxoplasma gondii parasites, and consumption of infected pork may lead to toxoplasmosis in humans. We estimated seroprevalence in sows and finishers from conventional and organic herds in Denmark and discussed the strategies for reducing the risk from pork. We collected 447 blood samples from 59 herds, and additional meat-juice samples from 212 of the same pigs. Using a T. gondii IgG commercial ELISA test, we found 2% (95% CI = 0.4%-5%) apparent seroprevalence of T. gondii in conventional finishers, 11% (95% CI = 6%-17%) in organic finishers, 19% (95% CI = 11%-30%) in conventional sows and 60% (95% CI = 47%-72%) in organic sows. The odds of an animal testing positive for T. gondii was 16 times higher (95% CI = 4.6-74.3) in organic compared to conventional herds. The odds were 22 times higher (95% CI = 6.5-88.3) if the animal was a sow compared to a finisher. Meat-juice ELISA values were significantly correlated with plasma results (P < 0.001), but on average 64% of the blood-plasma ELISA values. Lowering the recommended cut-off from 20 to 13 percent positive values of the positive control for meat-juice ELISA, resulted in the meat-juice ELISA identifying 93% of the plasma positives as positive and 99% of the plasma negatives as negative. The time taken to detect one or more infected pigs from a T. gondii positive herd at slaughter was estimated using abattoir data on pigs (17,195,996) and batches (165,569) delivered to Danish abattoirs in 2018. The time to detection was affected by the seroprevalence, frequency at which the pigs were delivered, the number of samples tested per batch delivery and the batch sizes. Time to detection was long in conventional finisher herds due to low prevalence, and in sow herds because of intermittent delivery of a low number of sows. In organic finisher herds, time to detection was short due to medium prevalence and frequent delivery of a high number of finishers. Conventional finisher herds may be classified as low-risk, organic finisher herds as medium-risk, and conventional and organic sow herds as high-risk herds. Risk-mitigation strategies at processing plants (freezing or curing) or at the consumer level (heat treatment) for meat originating from high-risk herds, surveillance of medium-risk herds, and auditing for controlled housing (high biosecurity) in low-risk herds may be cost-effective alternatives to serological surveillance of all Danish pig herds.
Keywords: Conventional; Meat-juice; Organic; Risk-based surveillance; Seroprevalence; Toxoplasma gondii.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.