Metal-Organic Phase-Change Materials for Thermal Energy Storage

J Am Chem Soc. 2020 Nov 11;142(45):19170-19180. doi: 10.1021/jacs.0c08777. Epub 2020 Nov 2.

Abstract

The development of materials that reversibly store high densities of thermal energy is critical to the more efficient and sustainable utilization of energy. Herein, we investigate metal-organic compounds as a new class of solid-liquid phase-change materials (PCMs) for thermal energy storage. Specifically, we show that isostructural series of divalent metal amide complexes featuring extended hydrogen bond networks can undergo tunable, high-enthalpy melting transitions over a wide temperature range. Moreover, these coordination compounds provide a powerful platform to explore the specific factors that contribute to the energy density and entropy of metal-organic PCMs. Through a systematic analysis of the structural and thermochemical properties of these compounds, we investigated the influence of coordination bonds, hydrogen-bond networks, neutral organic ligands, and outer-sphere anions on their phase-change thermodynamics. In particular, we identify the importance of high densities of coordination bonds and hydrogen bonds to achieving a high PCM energy density, and we show how metal-dependent changes to the local coordination environment during melting impact the entropy and enthalpy of metal-organic PCMs. These results highlight the potential of manipulating order-disorder phase transitions in metal-organic materials for thermal energy storage.