Eimeria maxima possesses integral families of immunogenic constituents that promote differentiation of immune cells during host-parasite interactions. Dendritic cells (DCs) have an irreplaceable role in the modulation of the host immunity. However, the selection of superlative antigen with immune stimulatory efficacies on host DCs is lacking. In this study, 5 recombinant proteins of E. maxima (Em), including Em14-3-3, rhomboid family domain containing proteins (ROM) EmROM1 and EmROM2, microneme protein 2 (EmMIC2), and Em8 were identified to stimulate chicken splenic derived DCs in vitro. The cultured populations were incubated with recombinant proteins, and typical morphologies of stimulated DCs were obtained. DC-associated markers major histocompatibility complex class II, CD86, CD11c, and CD1.1, showed upregulatory expressions by flow cytometry assay. Immunofluorescence assay revealed that recombinant proteins could bind with the surface of chicken splenic derived DCs. Moreover, quantitative real-time PCR results showed that distinct gene expressions of Toll-like receptors and Wnt signaling pathway were upregulated after the coincubation of recombinant proteins with DCs. The ELISA results indicated that the DCs produced a significant higher level of interleukin (IL)-12 and interferon-γ secretions after incubation with recombinant proteins. While transforming growth factor-β was significantly increased with rEmROM1, rEmROM2, and rEmMIC2 as compared to control groups, and IL-10 did not show significant alteration. Taken together, these results concluded that among 5 potential recombinant antigens, rEm14-3-3 could promote immunogenic functions of chicken splenic derived DCs more efficiently, which might represent an effective molecule for inducing the host Th1-mediated immune response against Eimeria infection.
Keywords: Eimeria maxima; chicken spleen; dendritic cell; immunogenic function; recombinant antigens.
Copyright © 2020. Published by Elsevier Inc.