Towards High Molecular Weight Furan-Based Polyesters: Solid State Polymerization Study of Bio-Based Poly(Propylene Furanoate) and Poly(Butylene Furanoate)

Materials (Basel). 2020 Oct 30;13(21):4880. doi: 10.3390/ma13214880.

Abstract

In the era of polymers from renewable resources, polyesters derived from 2,5 furan dicarboxylic acid (FDCA) have received increasing attention due to their outstanding features. To commercialize them, it is necessary to synthesize high molecular weight polymers through efficient and simple methods. In this study, two furan-based polyesters, namely poly (propylene furanoate) (PPF) and poly(butylene furanoate) (PBF), were synthesized with the conventional two-step melt polycondensation, followed by solid-state polycondensation (SSP) conducted at different temperatures and reaction times. Molecular weight, structure and thermal properties were measured for all resultant polyesters. As expected, increasing SSP time and temperature results in polymers with increased intrinsic viscosity (IV), increased molecular weight and reduced carboxyl end-group content. Finally, those results were used to generate a simple mathematical model that prognosticates the time evolution of the materials' IV and end groups concentration during SSP.

Keywords: biobased polymers; furan dicarboxylic acid; poly(butylene furanoate); poly(propylene furanoate); polyesters; solid state polymerization; thermal properties.