Antibody phage display is a powerful platform for discovery of clinically applicable high affinity monoclonal antibodies against a broad range of targets. Libraries generated from immunized animals offer the advantage of in vivo affinity-maturation of V regions prior to library generation. Despite advantages, few studies have described isolation of antibodies from rats using immune phage display. In our study, we describe a novel primer set, covering the full rat heavy chain variable and kappa light chain variable regions repertoire for the generation of an unbiased immune libraries. Since the immune repertoire of rats is poorly understood, we first performed a deep sequencing analysis of the V(D)J regions of VH and VLK genes, demonstrating the high abundance of IGVH2 and IGVH5 families for VH and IGVLK12 and IGVLK22 for VLK. The comparison of gene's family usage in naïve rats have been used to validate the frequency's distribution of the primer set, confirming the absence of PCR-based biases. The primers were used to generate and assemble a phage display library from human CD160-vaccinated rats. CD160 represents a valid therapeutic target as it has been shown to be expressed on chronic lymphocytic leukaemia cells and on the surface of newly formed vessels. We utilised a novel phage display panning strategy to isolate a high affinity pool (KD range: 0.399-233 nM) of CD160 targeting monoclonal antibodies. Subsequently, identified binders were tested for function as third generation Chimeric Antigen Receptors (CAR) T cells demonstrating specific cytolytic activity. Our novel primer set coupled with a streamlined strategy for phage display panning enable the rapid isolation and identification of high affinity antibodies from immunised rats. The therapeutic utility of these antibodies was demonstrated in CAR format.