Lethally irradiated mice were injected with semiallogeneic, T-depleted bone marrow cells and an amount of peripheral T lymphocytes sufficient to induce graft-vs.-host disease (GVHD) becoming apparent on the second week after the graft and leading to an increasing mortality rate within the following weeks (greater than 90% mortality within 80 d). Mice receiving bone marrow cells alone had no GVHD and were used as controls. Beginning on day 8, mice with GVHD were injected weekly with 2 mg of either rabbit anti-mouse recombinant tumor necrosis factor/cachectin (TNF-alpha) IgG, or normal rabbit IgG. On the 16-18th d, mice were killed to examine the skin and intestinal lesions of the acute phase of GVHD. The anti-TNF treatment resulted in an almost complete prevention of the severe lesions seen in the mice treated with normal rabbit IgG, i.e., the skin epidermal cell necrosis, foci of lichenoid hyperplastic reactions, and loss of the hypodermic fat; in the gut dilatation with marked flattening of the villi and elevation of the crypts, with increased numbers of mitoses and isolated crypt cell necrosis. In addition to preventing these acute lesions, anti-TNF treatment resulted in a significantly decreased mortality (approximately 70% survival at 80 d). These results suggest that during acute GVHD, the activation of grafted lymphocytes leads to a local release of TNF in the cutaneous and intestinal mucosae, which induces epithelial cell alterations and increases the inflammatory reaction.